2.4

Angle Properties in Polygons

```
convex polygon

Interior angle measures

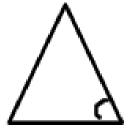
less man 180°
```

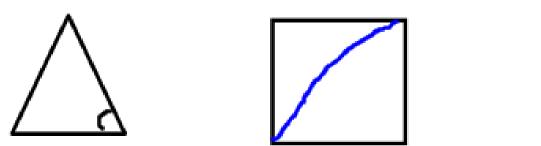
C. Draw the polygons listed in the table below. Create triangles to help you determine the sum of the measures of their interior angles. Record your results in a table like the one below.

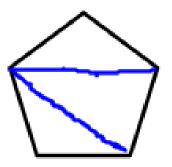
Polygon	Number of Sides	Number of Triangles	Sum of Angle Measures
triangle	3	1	180°
quadrilateral	4	2	360°
pentagon	5	3	540°
hexagon	6	ਮ	7à0°
heptagon	7	5	900°
octagon	8	6	1080°

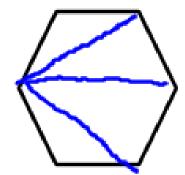
D. Make a conjecture about the relationship between the sum of the measures of the interior angles of a polygon, S, and the number of sides of the polygon, n.
N = 2
S = 180 (N = 2)

E. Use your conjecture to predict the sum of the measures of the interior angles of a dodecagon (12 sides) verify journalistion using triangles.









Need to Know

- The sum of the measures of the interior angles of a convex polygon with n sides can be expressed as 180°(n − 2).
- The measure of each interior angle of a regular polygon is $\frac{180^{\circ}(n-2)}{n}$.
- The sum of the measures of the exterior angles of any convex polygon is 360°.

$$S = 180(N-2)$$
 $S = 180(S-2)$
 $S = 180(S)$
 $S = 180(S)$
 $S = 180(S)$

EXAMPLE 2

Reasoning about angles in a regular polygon

Outdoor furniture and structures like gazebos sometimes use a regular hexagon in their building plan. Determine the measure of each interior angle of a regular hexagon.

$$S = \frac{180(n-2)}{n}$$

$$S = \frac{180(6-2)}{6}$$

$$S = \frac{180(4)}{6}$$

$$S = \frac{180}{6}$$

Determine the number of sides of a polygon whose interior angles sum 4140 degrees

$$S = 4140$$

$$S = 180(n-2)$$

$$\frac{4140}{180} = \frac{180(n-2)}{180}$$

$$\frac{33}{180} = \frac{1}{180}$$

$$\frac{33}{180} = \frac{1}{180}$$

Determine the number of sides of regular polygon whose interior angle measures 170 degrees

$$N=\frac{1}{5}$$

$$S=\frac{180(n-a)}{n}$$

$$170=\frac{180(h-a)}{n}$$

$$170n=\frac{180n-n}{360}$$

$$360=\frac{10n}{n-36}$$

p. 99-100 - #1-8 use example 3 (p. 98) as a template for #4 (p. 99)