HW Review p. 75 8, a) F 5.9 cm F 3.5 cm/2 acly tan F= 3.5 47497 $\angle F = \tan^{-1} \left(\frac{3.5}{4.7447} \right)$ czzaz+bz $\tan F = \frac{36.4^{\circ}}{acl_{j}}$ $\sqrt{29.56} = \sqrt{a^{2}}$ $\sqrt{29.56} = \sqrt{a^{2}}$ 4.7497 z a (m)

a)
$$tan6 = \frac{20}{100}$$

 $0 = tan^{3}(\frac{20}{100})$
 $0 = 11.3^{0}$

$$a = \frac{25}{100}$$
 $a = \frac{25}{100}$
 $a = \frac{25}{100}$
 $a = \frac{25}{100}$
 $a = \frac{25}{100}$

VQ.

2.2 Using the Tangent Ratio to Calculate Lengths

 Determine the length of XY to the nearest tenth of a centimetre.

$$\tan 70 = \frac{\text{OPP}}{\text{adj}}$$
(5.0) $\tan 70 = \frac{2}{8.0}$
(5.0) $\tan 70 = \frac{2}{8.0}$
(5.0) $\tan 70 = \frac{2}{8.0}$

Determine the length of VX to the nearest tenth of a centimetre.

$$(x) \tan(43) = \frac{7.2}{2} (20)$$

$$(x).tan(42) = 7.2$$

$$x = \frac{7.2}{\tan(42)}$$

A searchlight beam shines vertically on a cloud. At a horizontal distance of 250 m from the searchlight, the angle between the ground and the line of sight to the cloud is 75°. Determine the height of the cloud to the nearest metre.

$$tan\theta = \frac{24}{24}$$

 $tan(75) = \frac{x}{250}$
 $x = (250)(tan(75))$
 $x = 933 m$

3. At a horizontal distance of 200 m from the base of an observation tower, the angle between the ground and the line of sight to the top of the tower is 8°. How high is the tower to the nearest metre? The diagram is not drawn to scale.

